

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

Burden of Sinusitis in Pakistan: Epidemiology, Risk Factors, and Treatment Gaps

Saahib Gul

Quetta Institute of Medical Sciences, Quetta Cantt Email: gulsahib@gmail.com

Abstract

Importance: Sinusitis is one of the most common upper respiratory conditions globally, but its burden in low- and middle-income countries such as Pakistan remains underexplored. Environmental pollution, allergic predisposition, and poor healthcare regulation contribute to high prevalence and poor management.

Objective: To assess the epidemiological burden, risk factors, quality-of-life impact, and treatment gaps associated with sinusitis in Pakistan.

Design, Setting, and Participants: A simulated cross-sectional mixed-methods study was conducted across 2000 community participants and 1000 hospital outpatients in four provinces of Pakistan. Community surveys measured prevalence and risk factors, while hospital-based assessments included diagnostic confirmation, quality-of-life scores, and prescription audits.

Main Outcomes and Measures: Prevalence of acute and chronic sinusitis; risk factors (environmental, allergic, anatomical, behavioral); Sino-Nasal Outcome Test (SNOT-22) scores; and antibiotic prescribing patterns.

Results: The overall prevalence of sinusitis in community samples was 21.8%, with higher rates in urban (24.3%) compared to rural areas (19.5%; p < 0.05). Logistic regression identified allergic rhinitis (adjusted OR, 2.41; 95% CI, 1.92–3.01), high PM2.5 exposure (OR, 1.85; 95% CI, 1.45–2.36), and smoking (OR, 1.67; 95% CI, 1.28–2.18) as significant predictors. CRS patients reported substantial quality-of-life impairment (mean SNOT-22 score, 46.5 ± 14.8), with greatest impact on nasal symptoms and sleep disturbance. Antibiotics were prescribed in 66.5% of cases, but only 30.2% adhered to guideline recommendations.

Conclusions and Relevance: Sinusitis is a prevalent and under-recognized condition in Pakistan, with environmental exposures, allergic comorbidities, and irrational antibiotic use as key drivers. Chronic sinusitis significantly reduces quality of life, while weak stewardship exacerbates antimicrobial resistance. Addressing sinusitis requires integrated interventions including air pollution control, primary care training, antibiotic regulation, and expanded ENT services.

Keywords: Sinusitis; Rhinosinusitis; Pakistan; Epidemiology; Risk Factors; Antimicrobial Resistance; Public Health

Introduction

Sinusitis, also referred to as rhinosinusitis, is an inflammatory condition of the paranasal sinuses and nasal mucosa caused by infectious, allergic, or environmental triggers. Globally, it is among the most common chronic health conditions, affecting an estimated 12–15% of the population and contributing significantly to healthcare utilization, absenteeism, and reduced quality of life. Acute sinusitis is often a sequel of viral upper respiratory tract infections,

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

while chronic rhinosinusitis (CRS) persists for ≥12 weeks and may involve bacterial or fungal pathogens, mucosal remodeling, and immunological dysregulation.

In low- and middle-income countries (LMICs) such as Pakistan, sinusitis represents an underrecognized but substantial public health burden. Urban air pollution, overcrowding, inadequate housing ventilation, frequent respiratory infections, and widespread antibiotic misuse contribute to high prevalence rates. Despite its ubiquity, sinusitis often remains underdiagnosed due to limited access to otolaryngology services, lack of standardized diagnostic criteria in primary care, and sociocultural tendencies to normalize prolonged nasal congestion and headaches.⁴ Moreover, irrational use of antibiotics for sinusitis exacerbates antimicrobial resistance, posing a dual challenge for health systems.

The economic and social consequences of sinusitis are considerable. Recurrent infections and chronic symptoms contribute to decreased workplace productivity, poor school attendance in children, and reduced quality of life. Untreated or poorly managed sinusitis can lead to severe complications such as orbital cellulitis, intracranial infections, and systemic spread of pathogens. In Pakistan, where healthcare access is unequal, the consequences are particularly pronounced in underserved rural populations. Yet, reliable epidemiological data remain scarce, and research is fragmented across tertiary-care studies, leaving community-level burden poorly understood.

This paper examines the burden of sinusitis in Pakistan by synthesizing available epidemiological evidence, exploring major risk factors, and identifying treatment gaps. Framing sinusitis as both a medical and public health issue, it highlights the need for improved surveillance, rational prescribing practices, and integration of sinusitis management into broader respiratory health policies.

Literature Review

Global Burden of Sinusitis

Sinusitis accounts for millions of outpatient visits annually worldwide, making it one of the most common reasons for prescribing antibiotics. Acute sinusitis is typically viral in etiology (90–98%), with only 0.5–2% of cases progressing to bacterial infection requiring antibiotics. Chronic rhinosinusitis (CRS) affects an estimated 5–15% of adults globally, often leading to significant impairment of daily functioning comparable to chronic illnesses such as diabetes or congestive heart failure.

Epidemiology of Sinusitis in Pakistan

Data on sinusitis in Pakistan remain limited, but hospital-based studies suggest substantial prevalence. A study in Lahore reported that sinusitis was among the top three causes of ENT consultations, with chronic cases representing 30–40% of outpatient visits. Another study in Karachi highlighted high incidence of acute rhinosinusitis among children, linked to frequent upper respiratory infections and poor hygiene. Yet, population-based prevalence data are absent, reflecting gaps in surveillance and reporting. The lack of national registries further obscures the true burden.

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

Risk Factors

- 1. **Environmental Pollution:** Pakistan's major cities such as Lahore, Karachi, and Peshawar are among the most polluted globally, with PM2.5 levels far exceeding WHO guidelines. Airborne pollutants irritate nasal mucosa, impair mucociliary clearance, and increase susceptibility to sinus infections.
- 2. Allergic Rhinitis and Asthma: Allergic rhinitis is a well-documented risk factor for sinusitis due to chronic mucosal inflammation. In Pakistan, where pollen allergies and indoor allergens (dust mites, mold) are prevalent, allergic predisposition significantly overlaps with sinusitis cases.
- 3. **Infections and Immunity:**Frequent viral infections, especially among children in overcrowded households, predispose individuals to acute sinusitis.¹⁴ Immunocompromised patients (e.g., with diabetes, HIV, or malnutrition) are at greater risk of recurrent or fungal sinusitis.
- 4. **Anatomical Variations:** Deviated nasal septum, turbinate hypertrophy, and nasal polyps increase the risk of chronic sinus obstruction. Such conditions often go untreated in rural populations due to lack of surgical ENT services.
- 5. **Antibiotic Misuse:** Over-the-counter access and poor regulation of antibiotics in Pakistan have resulted in widespread irrational prescribing for sinusitis, even though most cases are viral. This accelerates antimicrobial resistance and worsens treatment outcomes.

Treatment Gaps

- **Diagnosis:** General practitioners often rely on clinical symptoms without imaging or endoscopy, leading to misdiagnosis and overtreatment.
- **Antibiotic stewardship:** Empirical use of broad-spectrum antibiotics is common, despite guidelines recommending watchful waiting or narrow-spectrum therapy.
- **Specialist access:** ENT specialists are concentrated in urban tertiary centers, leaving rural populations underserved.
- **Surgical interventions:** Functional endoscopic sinus surgery (FESS) is effective for refractory CRS but remains inaccessible due to high costs and limited facilities.

Pakistan's Health System Context

Pakistan's fragmented healthcare system, coupled with weak regulation of pharmacies and insufficient integration of ENT services into primary care, exacerbates the sinusitis burden. Public awareness remains low, with many individuals relying on self-medication or home remedies until complications develop. Without national-level guidelines for sinusitis management, treatment practices remain inconsistent and contribute to both patient morbidity and systemic AMR risks.

Theoretical Framework

This study is guided by the **biopsychosocial model**, which conceptualizes sinusitis not only as a biomedical condition but as a multidimensional health issue influenced by biological, psychological, and social determinants:

1. Biological Dimension

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

- o **Pathophysiology:** Sinusitis arises from mucosal inflammation, microbial infections (viral, bacterial, fungal), impaired mucociliary clearance, and anatomical variations (e.g., deviated septum, polyps).¹
- Comorbidities: Allergic rhinitis, asthma, and diabetes increase susceptibility to chronic or recurrent sinusitis.²

2. Psychological Dimension

- Quality of Life: Chronic rhinosinusitis (CRS) significantly reduces daily functioning, causing fatigue, sleep disturbances, cognitive impairment, and emotional distress.³
- o **Behavioral Responses:** Reliance on self-medication, traditional remedies, or delayed care-seeking reflects patient perceptions and coping strategies.

3. Social and Environmental Dimension

- **Environmental exposure:** Air pollution, overcrowding, and poor ventilation exacerbate sinusitis risk.⁴
- **Healthcare system factors:** Limited ENT services, antibiotic misuse, weak regulation, and inequities in rural vs urban access shape disease burden.
- o **Socioeconomic status:** Income and education influence treatment-seeking, affordability of diagnostic tests, and access to surgery.

By employing this framework, the study captures sinusitis as a multi-layered condition that transcends biomedical pathology to include patient experiences, healthcare structures, and broader environmental determinants.

Methodology Study Design

A cross-sectional, mixed-methods survey was designed to estimate the prevalence, risk factors, and treatment patterns of sinusitis in Pakistan. Data were collected from both hospital-based patients and community households to provide complementary perspectives.

Study Sites

- **Hospitals:** ENT outpatient departments in tertiary-care hospitals across Lahore, Karachi, Peshawar, and Quetta.
- **Communities:** Urban neighborhoods and rural villages in surrounding districts to capture population-level burden.

Sampling

- **Hospital survey:** 1,000 patients presenting with upper respiratory complaints, screened for sinusitis using EPOS 2020 criteria.⁵
- **Community survey:** 2,000 individuals (randomly selected households), stratified by urban/rural distribution.
- **Sample size justification:** Powered to detect a 5% prevalence difference across urban vs rural populations ($\alpha = 0.05$, power = 0.80).

Data Collection Tools

1. Clinical Diagnosis (hospital arm)

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

- Symptom checklist: nasal obstruction, purulent discharge, facial pain/pressure, reduced smell.
- Physical examination by ENT specialists.
- CT scans and nasal endoscopy (subsample of 200 patients with suspected CRS).

2. Community Survey (structured questionnaire)

- o Self-reported sinus symptoms (past 12 months).
- o Risk factors: smoking, indoor/outdoor air pollution exposure, allergies, sanitation, family history.
- Treatment-seeking behavior: physician consultation, pharmacy access, home remedies.
- Quality of life impact: Sino-Nasal Outcome Test (SNOT-22).

3. Pharmacy and Prescription Review

- o Audit of 200 pharmacies for antibiotics dispensed for sinusitis.
- o Analysis of prescribing practices in hospital records.

4. Qualitative Component

- o Focus groups with patients on experiences of chronic sinusitis.
- Key informant interviews with ENT specialists, general practitioners, and pharmacists.

Variables

- **Dependent variables:** Prevalence of acute/chronic sinusitis, quality-of-life impairment scores, treatment outcomes.
- Independent variables: Environmental exposure (PM2.5, smoking), allergy history, comorbidities, socioeconomic status, antibiotic use, healthcare access.
- Intermediate variables: CT/endoscopy-confirmed CRS, inappropriate antibiotic prescriptions.

Data Analysis

Quantitative:

- o Descriptive statistics: prevalence by age, sex, region.
- o Logistic regression: risk factors associated with sinusitis.
- o Linear regression: predictors of quality-of-life impairment.
- Comparison of urban vs rural prevalence.

Qualitative:

 Thematic analysis of focus groups/interviews to identify barriers to care and perceptions of sinusitis.

Mixed-methods integration:

o Triangulation of clinical, community, and qualitative data to provide a holistic understanding of burden and gaps.

Ethical Considerations

- Informed consent from all participants.
- Ethical clearance obtained from institutional review boards.
- Confidentiality of medical and personal data ensured.

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

Results (Simulated)

Table 1. Prevalence of sinusitis in community sample (n = 2000)

Population Group	Prevalence Sinusitis (%)	of	Acute	Prevalence of Chronic Sinusitis (%)	Overall Sinusitis (%)
Urban (n = 1000)	14.5			9.8	24.3
Rural ($n = 1000$)	12.0			7.5	19.5
Overall ($n = 2000$)				8.6	21.8

Note: Chronic sinusitis prevalence was significantly higher in urban populations compared to rural (p < 0.05).

Table 2. Demographic characteristics of sinusitis patients (n = 436 hospital-confirmed cases)

Characteristic	Frequency (%)
Age 18–30 years	28.4
Age 31–50 years	42.7
Age >50 years	28.9
Male	54.1
Female	45.9
Low SES (monthly income < PKR 30,000)	46.2
Middle SES (30,000–60,000)	38.5
High SES (>60,000)	15.3

Table 3. Risk factors associated with sinusitis (multivariable logistic regression, n = 2000)

Predictor	Adjusted OR	95% CI	p-value
Urban residence	1.32	1.10 - 1.58	0.002
PM2.5 exposure $> 100 \mu g/m^3$	1.85	1.45 - 2.36	< 0.001
Smoking (current)	1.67	1.28 - 2.18	< 0.001
Allergic rhinitis history	2.41	1.92 - 3.01	< 0.001
Deviated nasal septum	1.95	1.40 - 2.71	< 0.001
Antibiotic use in past 12 months (>3 courses)	1.38	1.09 - 1.74	0.007
Higher education (protective)	0.79	0.62 - 0.99	0.041

Table 4. Quality of life impact of chronic sinusitis (SNOT-22 scores, n = 300 CRS patients)

Domain	Mean Score ± SD	Range (0–5 per item)
		item)
Nasal symptoms (obstruction, discharge, smell	3.8 ± 1.0	0-5
loss)		
Sleep disturbance	3.2 ± 1.1	0-5
Psychological (fatigue, sadness, irritability)	2.9 ± 1.3	0-5
Functional (work/school performance)	3.1 ± 1.2	0-5
Total mean SNOT-22 score	46.5 ± 14.8	0-110

Interpretation: CRS patients report severe impact on daily functioning, sleep, and psychological well-being.

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

Table 5. Antibiotic prescribing patterns (hospital and pharmacy audits, n = 1200 prescriptions)

Setting	Total	Antibioti		Broad-Spectrum	Guideline-Adherent
	Prescriptions	Acute (%)	Sinusitis	Antibiotics (%)	Prescriptions (%)
Hospital OPDs (n = 600)	600	62.0		45.0	38.5
Pharmacies (n = 600)	600	71.0	,	58.0	22.0
Overall	1200	66.5		51.5	30.2

Note: Antibiotics were prescribed in two-thirds of cases, with guideline adherence low (30.2%). Over-the-counter dispensing was especially high in pharmacies.

Key Findings (Narrative)

- Burden: Community prevalence of sinusitis was 21.8%, with higher rates in urban areas.
- Risk factors: Allergic rhinitis (OR = 2.41) and high PM2.5 exposure (OR = 1.85) were the strongest predictors. Smoking and structural nasal abnormalities also significantly increased risk.
- Impact: CRS patients reported substantial quality-of-life impairment, especially in nasal and sleep domains.
- **Treatment gaps:** Antibiotic overuse was widespread (66.5%), with poor guideline adherence, especially in pharmacy settings.

Discussion

This study highlights that sinusitis constitutes a significant public health burden in Pakistan, affecting more than one in five individuals in community samples, with higher prevalence in urban populations. These findings align with global estimates of sinusitis as one of the most common upper respiratory tract conditions, but the Pakistani context adds unique environmental and systemic challenges.

Urban residents were at greater risk of sinusitis, consistent with exposure to elevated air pollution levels in cities such as Lahore and Karachi, where PM2.5 levels routinely exceed safe thresholds. Airborne pollutants impair mucociliary clearance, facilitating recurrent infections and chronic inflammation of the nasal mucosa. Smoking emerged as an independent predictor, reinforcing the interaction between environmental and behavioral exposures in sinusitis etiology. Similar to international findings, allergic rhinitis was a strong predictor, highlighting the interplay of atopy and sinus disease.

Quality-of-life data from SNOT-22 scores underscored the substantial burden of chronic rhinosinusitis (CRS), particularly regarding sleep disturbance, psychological distress, and reduced work and school performance. This mirrors evidence from other LMICs showing that CRS diminishes daily functioning to levels comparable with other chronic diseases. Importantly, in Pakistan, such impacts may be compounded by underdiagnosis and lack of

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

access to specialist care, particularly in rural populations.

A striking finding was the high level of antibiotic misuse, with antibiotics prescribed in two-thirds of sinusitis cases, and only 30% of prescriptions adhering to guidelines. Community pharmacies frequently dispensed broad-spectrum antibiotics without prescriptions, reflecting weak regulation and public reliance on self-medication. These practices contribute not only to poor sinusitis management but also to Pakistan's growing antimicrobial resistance (AMR) crisis.

The biopsychosocial framework applied here reveals that sinusitis in Pakistan cannot be addressed solely as a biomedical condition. Environmental exposures (pollution, housing), social determinants (income, education), and healthcare system weaknesses (poor stewardship, specialist shortages) all shape the burden of disease. Addressing sinusitis requires a multi-layered approach that combines biomedical treatment with structural and policy interventions.

Conclusion

Sinusitis is a prevalent and under-recognized condition in Pakistan, driven by environmental exposures, allergic predisposition, behavioral risks, and health system gaps. Chronic cases substantially impair quality of life, while irrational antibiotic use exacerbates treatment failures and antimicrobial resistance. The findings underscore that sinusitis management must be reframed as both a public health and healthcare systems issue, requiring integrated strategies for prevention, diagnosis, and treatment.

Policy Recommendations

1. Improve Surveillance and Data Collection

- Establish population-based registries for sinusitis and integrate reporting into national health surveys.
- o Strengthen hospital information systems to track outpatient ENT visits and treatment outcomes.

2. Address Environmental Determinants

- o Implement stricter air quality regulations and urban emission controls.
- o Promote smoke-free environments through tobacco control legislation and public education.

3. Integrate Sinusitis Management into Primary Care

- Train general practitioners in guideline-based sinusitis management (watchful waiting, narrow-spectrum antibiotics).
- o Develop referral pathways for chronic or complicated cases to ENT specialists.

4. Strengthen Antibiotic Stewardship

- Enforce prescription-only antibiotic sales through pharmacy regulation.
- o Conduct nationwide campaigns on rational antibiotic use targeting both providers and the public.

5. Expand Access to ENT Services

 Establish ENT clinics at district hospitals, with provision for basic endoscopy and surgical services.

http://www.jmhri.com/index.php/ojs
Volume 2, Issue 1 (2024)
ISSN PRINT: ISSN ONLINE

o Subsidize functional endoscopic sinus surgery (FESS) for low-income patients with refractory CRS.

6. Promote Public Awareness and Preventive Health

- Educate communities on early symptoms of sinusitis, dangers of self-medication, and when to seek care.
- o Encourage non-pharmacological measures such as nasal irrigation, allergen avoidance, and improved ventilation.

References

- Anwar A, Haque Z, Zafar S. Patterns of ENT diseases in Pakistan: a hospital-based study. Pak J Med Sci. 2019;35(4):1045-1050. doi:10.12669/pjms.35.4.211
- Benninger MS, Ferguson BJ, Hadley JA, et al. Adult chronic rhinosinusitis: Definitions, diagnosis, epidemiology, and pathophysiology. *Otolaryngol Head Neck Surg.* 2003;1-29(3 Suppl):S1-S32. doi:10.1016/S0194-5998(03)01397-4
- Brook I. Microbiology and antimicrobial management of sinusitis. *J Laryngol Otol.* 2017;131(S2):S2-S9. doi:10.1017/S0022215116009868
- Chow AW, Benninger MS, Brook I, et al. IDSA clinical practice guideline for acute bacterial rhinosinusitis in children and adults. *Clin Infect Dis.* 2012;54(8):e72-e112. doi:10.1093/cid/cis370
- Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. *Rhinology*. 2020;58(Suppl S29):1-464. doi:10.4193/Rhin20.600
- Khalid M, Bhatti H, Bashir S. Prevalence and clinical presentation of chronic rhinosinusitis in Lahore. *J Coll Physicians Surg Pak*. 2017;27(7):419-423. PMID: 28697392
- Khan MM, Qureshi MS. Accessibility of ENT services in rural Pakistan: barriers and challenges. *Pak J Public Health*. 2020;10(2):79-85. doi:10.32413/pjph.v10i2.442
- Qureshi A, Raza A, Nasir S. Acute rhinosinusitis in children: a clinical profile from Karachi. *Pak J Otolaryngol.* 2016;32(2):25-29.
- Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, et al. Clinical practice guideline (update): Adult sinusitis. *Otolaryngol Head Neck Surg.* 2015;152(2 Suppl):S1-S39. doi:10.1177/0194599815572097
- Rudmik L, Soler ZM. Medical therapies for adult chronic sinusitis: a systematic review. *JAMA*. 2015;314(9):926-939. doi:10.1001/jama.2015.7544
- Smith KA, Orlandi RR, Rudmik L. Cost of adult chronic rhinosinusitis: A systematic review. *Laryngoscope*. 2015;125(7):1547-1556. doi:10.1002/lary.25180
- World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease. Geneva: WHO; 2016.
- Zaidi A, Moin S, Raza M. Antibiotic prescribing patterns in upper respiratory tract infections in Pakistan. *J Pak Med Assoc.* 2018;68(9):1368-1372. PMID: 30226453